1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
//! Cursor movement.

use std::fmt;
use std::ops;
use std::io::{self, Write, Error, ErrorKind, Read};
use async::async_stdin_until;
use std::time::{SystemTime, Duration};
use raw::CONTROL_SEQUENCE_TIMEOUT;
use numtoa::NumToA;

derive_csi_sequence!("Hide the cursor.", Hide, "?25l");
derive_csi_sequence!("Show the cursor.", Show, "?25h");

derive_csi_sequence!("Restore the cursor.", Restore, "u");
derive_csi_sequence!("Save the cursor.", Save, "s");

derive_csi_sequence!("Change the cursor style to blinking block", BlinkingBlock, "\x31 q");
derive_csi_sequence!("Change the cursor style to steady block", SteadyBlock, "\x32 q");
derive_csi_sequence!("Change the cursor style to blinking underline", BlinkingUnderline, "\x33 q");
derive_csi_sequence!("Change the cursor style to steady underline", SteadyUnderline, "\x34 q");
derive_csi_sequence!("Change the cursor style to blinking bar", BlinkingBar, "\x35 q");
derive_csi_sequence!("Change the cursor style to steady bar", SteadyBar, "\x36 q");

/// Goto some position ((1,1)-based).
///
/// # Why one-based?
///
/// ANSI escapes are very poorly designed, and one of the many odd aspects is being one-based. This
/// can be quite strange at first, but it is not that big of an obstruction once you get used to
/// it.
///
/// # Example
///
/// ```rust
/// extern crate termion;
///
/// fn main() {
///     print!("{}{}Stuff", termion::clear::All, termion::cursor::Goto(5, 3));
/// }
/// ```
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Goto(pub u16, pub u16);

impl From<Goto> for String {
    fn from(this: Goto) -> String {
        let (mut x, mut y) = ([0u8; 20], [0u8; 20]);
        ["\x1B[", this.1.numtoa_str(10, &mut x), ";", this.0.numtoa_str(10, &mut y), "H"].concat()
    }
}

impl Default for Goto {
    fn default() -> Goto {
        Goto(1, 1)
    }
}

impl fmt::Display for Goto {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        debug_assert!(self != &Goto(0, 0), "Goto is one-based.");
        write!(f, "\x1B[{};{}H", self.1, self.0)
    }
}

/// Move cursor left.
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Left(pub u16);

impl From<Left> for String {
    fn from(this: Left) -> String {
        let mut buf = [0u8; 20];
        ["\x1B[", this.0.numtoa_str(10, &mut buf), "D"].concat()
    }
}

impl fmt::Display for Left {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "\x1B[{}D", self.0)
    }
}

/// Move cursor right.
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Right(pub u16);

impl From<Right> for String {
    fn from(this: Right) -> String {
        let mut buf = [0u8; 20];
        ["\x1B[", this.0.numtoa_str(10, &mut buf), "C"].concat()
    }
}

impl fmt::Display for Right {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "\x1B[{}C", self.0)
    }
}

/// Move cursor up.
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Up(pub u16);

impl From<Up> for String {
    fn from(this: Up) -> String {
        let mut buf = [0u8; 20];
        ["\x1B[", this.0.numtoa_str(10, &mut buf), "A"].concat()
    }
}

impl fmt::Display for Up {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "\x1B[{}A", self.0)
    }
}

/// Move cursor down.
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Down(pub u16);

impl From<Down> for String {
    fn from(this: Down) -> String {
        let mut buf = [0u8; 20];
        ["\x1B[", this.0.numtoa_str(10, &mut buf), "B"].concat()
    }
}

impl fmt::Display for Down {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "\x1B[{}B", self.0)
    }
}

/// Types that allow detection of the cursor position.
pub trait DetectCursorPos {
    /// Get the (1,1)-based cursor position from the terminal.
    fn cursor_pos(&mut self) -> io::Result<(u16, u16)>;
}

impl<W: Write> DetectCursorPos for W {
    fn cursor_pos(&mut self) -> io::Result<(u16, u16)> {
        let delimiter = b'R';
        let mut stdin = async_stdin_until(delimiter);

        // Where is the cursor?
        // Use `ESC [ 6 n`.
        write!(self, "\x1B[6n")?;
        self.flush()?;

        let mut buf: [u8; 1] = [0];
        let mut read_chars = Vec::new();

        let timeout = Duration::from_millis(CONTROL_SEQUENCE_TIMEOUT);
        let now = SystemTime::now();

        // Either consume all data up to R or wait for a timeout.
        while buf[0] != delimiter && now.elapsed().unwrap() < timeout {
            if stdin.read(&mut buf)? > 0 {
                read_chars.push(buf[0]);
            }
        }

        if read_chars.is_empty() {
            return Err(Error::new(ErrorKind::Other, "Cursor position detection timed out."));
        }

        // The answer will look like `ESC [ Cy ; Cx R`.

        read_chars.pop(); // remove trailing R.
        let read_str = String::from_utf8(read_chars).unwrap();
        let beg = read_str.rfind('[').unwrap();
        let coords: String = read_str.chars().skip(beg + 1).collect();
        let mut nums = coords.split(';');

        let cy = nums.next()
            .unwrap()
            .parse::<u16>()
            .unwrap();
        let cx = nums.next()
            .unwrap()
            .parse::<u16>()
            .unwrap();

        Ok((cx, cy))
    }
}

/// Hide the cursor for the lifetime of this struct.
/// It will hide the cursor on creation with from() and show it back on drop().
pub struct HideCursor<W: Write> {
    /// The output target.
    output: W,
}

impl<W: Write> HideCursor<W> {
    /// Create a hide cursor wrapper struct for the provided output and hides the cursor.
    pub fn from(mut output: W) -> Self {
        write!(output, "{}", Hide).expect("hide the cursor");
        HideCursor { output: output }
    }
}

impl<W: Write> Drop for HideCursor<W> {
    fn drop(&mut self) {
        write!(self, "{}", Show).expect("show the cursor");
    }
}

impl<W: Write> ops::Deref for HideCursor<W> {
    type Target = W;

    fn deref(&self) -> &W {
        &self.output
    }
}

impl<W: Write> ops::DerefMut for HideCursor<W> {
    fn deref_mut(&mut self) -> &mut W {
        &mut self.output
    }
}

impl<W: Write> Write for HideCursor<W> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.output.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.output.flush()
    }
}